Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Toxicon ; 236: 107349, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979924

ABSTRACT

Shiga toxin producing Escherichia coli (STEC) are foodborne pathogens that release Shiga toxin (Stx), virulence factor responsible for the development of Hemolytic Uremic Syndrome (HUS). Stx causes endothelial cell damage, which leads to platelets deposition and thrombi formation within the microvasculature. It has been described that Stx activates blood cells and induces the shedding of proinflammatory and prothrombotic microvesicles (MVs) containing the toxin. In this sense, it has been postulated that MVs containing Stx2 (MVs-Stx2+) can contribute to the physiopathology of HUS, allowing Stx2 to reach the target organs while evading the immune system. In this work, we propose that circulating MVs-Stx2+ can be a potential biomarker for the diagnosis and prognosis of STEC infections and HUS progression. We developed a rat HUS model by the intraperitoneal injection of a sublethal dose of Stx2 and observed: decrease in body weight, increase of creatinine and urea levels, decrease of creatinine clearance and histological renal damages. After characterization of renal damages, we investigated circulating total MVs and MVs-Stx2+ by flow cytometry at different times after Stx2 injection. Additionally, we evaluated the correlation of biochemical parameters such as creatinine and urea in plasma with MVs-Stx2+. As a result, we found a significant circulation of MVs-Stx2+ at 72 and 96 h after Stx2 injection, nevertheless no correlation with creatinine and urea plasma levels were detected. Our results suggest that MVs-Stx2+ may be an additional biomarker for the characterization and diagnosis of HUS progression. A further analysis is required in order to validate MVs-Stx2+ as biomarker of the disease.


Subject(s)
Escherichia coli Infections , Hemolytic-Uremic Syndrome , Shiga-Toxigenic Escherichia coli , Rats , Animals , Shiga Toxin 2/toxicity , Creatinine , Hemolytic-Uremic Syndrome/etiology , Hemolytic-Uremic Syndrome/pathology , Urea , Biomarkers
2.
Discov Oncol ; 13(1): 60, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35802257

ABSTRACT

Metabolic reprogramming (MR) influences progression of chronic myeloid leukaemia (CML) to blast crisis (BC), but metabolic programs may change transiently in a second dimension (metabolic plasticity, MP), driven by environments as hypoxia, affecting cytotoxic potency (CPot) of drugs targeting mitochondria or mitochondria-related cell stress responses (MRCSR) such as mitophagy and mitochondrial biogenesis. We assessed mitochondrial membrane potential (MMP), mitochondrial mass (MM), apoptosis, glucose uptake (GU), and CPot of arsenic trioxide (ATO), CCCP, valproic acid (VPA), vincristine (VCR), Mdivi1, and dichloroacetic acid (DCA) in CML BC cells K562 (BC-K562) under hypoxia through flow cytometry, and gene expression from GEO database. About 60% of untreated cells were killed after 72 h under hypoxia, but paradoxically, all drugs but ATO rescued cells and increased survival rates to almost 90%. Blocking mitophagy either with VCR or Mdivi1, or increasing mitochondrial biogenesis with VPA enhanced cell-survival with increased MM. DCA increased MM and rescued cells in spite of its role in activating pyruvate dehydrogenase and Krebs cycle. Cells rescued by DCA, VPA and CCCP showed decreased GU. ATO showed equal CPot in hypoxia and normoxia. MP was evidenced by differential expression of genes (DEG) under hypoxia related to Krebs cycle, lipid synthesis, cholesterol homeostasis, mitophagy, and mitochondrial biogenesis (GSE144527). A 25-gene MP-signature of BC-K562 cells under hypoxia identified BC cases among 113 transcriptomes from CML patients (GSE4170). We concluded that hypoxic environment drove a MP change evidenced by DEG that was reflected in a paradoxical pro-survival, instead of cytotoxic, effect of drugs targeting mitochondria and MRCSR.

3.
Front Microbiol ; 12: 636157, 2021.
Article in English | MEDLINE | ID: mdl-34394016

ABSTRACT

Regulated cell death (RCD) encompasses the activation of cellular pathways that initiate and execute a self-dismissal process. RCD occur over a range of stressors doses that overcome pro-survival cellular pathways, while higher doses cause excessive damage leading to passive accidental cell death (ACD). Hydrogen peroxide (HP) has been proposed as a potential tool to control harmful cyanobacterial blooms, given its capacity to remove cyanobacterial cells and oxidize cyanotoxins. HP is a source of hydroxyl radicals and is expected to induce RCD only within a limited range of concentrations. This property makes this compound very useful to better understand stress-driven RCD. In this work, we analyzed cell death in microcystin-producing Microcystis aeruginosa by means of a stochastic dose response model using a wide range of HP concentrations (0, 0.29, 1.76, 3.67, 7.35, 14.70, and 29.5 mM). We used flow cytometry and unsupervised classification to study cell viability and characterize transitional cell death phenotypes after exposing cells to HP for 48 and 72 h. Non-linear regression was used to fit experimental data to a logistic cumulative distribution function (cdf) and calculate the half maximal effective concentration (EC50). The EC50 of M. aeruginosa exposed to HP were 3.77 ± 0.26 mM and 4.26 ± 0.22 mM at 48 and 72 h, respectively. The derivative of cdf (probability density function; pdf) provided theoretical and practical demonstration that EC50 is the minimal dose required to cause RCD in 50% of cells, therefore maximizing the probability of RCD occurrence. 1.76 mM HP lead to an antioxidant stress response characterized by increased reactive oxygen species (ROS) levels and HP decomposition activity. The exposure of 3.67 mM HP induced a dose-related transition in cell death phenotype, and produced several morphological changes (a less dense stroma, distortion of the cell membrane, partial disintegration of thylakoids, extensive cytoplasmic vacuolation and highly condensed chromatin). The EC50 and the stochastic cdf and pdf together with the multidimensional transitional phenotypic analysis of single cells contribute to further characterize cell death pathways in cyanobacteria.

4.
Parasite Immunol ; 43(4): e12820, 2021 04.
Article in English | MEDLINE | ID: mdl-33434287

ABSTRACT

The goal of this study was to analyse the effects of a protein-deficient (PD) diet on antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro against newborn larvae (NBL) of Trichinella spiralis in the lungs of infected rats. Two groups of weaning Wistar rats received a PD diet (6.5% casein) and other two received a control diet (C, 20% casein). After ten days, one group of each diet was infected (PDI and CI ) with muscle larvae. Lung tissue extracts (LTE) and lung cell suspension (LCS) were obtained. PDI had lower titres of anti-NBL antibodies in LTE than CI . In ADCC assays using control cells, NBL mortality percentage was lower with LTE from PDI than LTE from CI (P < .01). In assays using control cytotoxic sera, ADCC was exerted by LCS from CI at all days post-infection (p.i.), but only by LCS from 13 days p.i. from PDI . ADCC assays combining LTE and LCS from the same group showed a lower response for PDI than for CI (P < .0001). LCS from PDI contained lower numbers of neutrophils, eosinophils and FcεRI+ cells than CI . PD may diminish ADCC activity against T spiralis NBL in lungs through alterations in specific antibodies and effector cells.


Subject(s)
Lung/immunology , Protein Deficiency/complications , Trichinella spiralis , Trichinellosis/complications , Animals , Antibodies, Helminth/blood , Antigens, Helminth/immunology , Female , Larva , Lung/parasitology , Rats , Rats, Wistar , Trichinella spiralis/immunology , Weaning
5.
Toxicol Appl Pharmacol ; 398: 115016, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32325063

ABSTRACT

Chronic lymphocytic leukemia (CLL) cells change their metabolic program between normoxia and hypoxia, possibly affecting cytotoxic drug potency by altering mitochondria-related cell stress responses (MRCSR) including mitophagy, mitochondrial biogenesis, and mitochondrial proteostasis. We evaluated in CLL cells from nine patients, the single and multiple-combined drug potency of arsenic trioxide (ATO), valproic acid (VPA), vincristine (VCR) and MG132 as four pharmacological sensors influencing mitochondrial apoptosis, mitochondrial biogenesis, mitophagy, and mitochondrial proteostasis respectively, under normoxia and hypoxia to force hypoxia-induced metabolic reprogramming (HMR). Untreated cells from all patients remained viable under O2 levels below 0.5% for 72 h. We obtained 21 measures of drug potency and interaction at 50% effect level that we denoted drug potency signature (DPS). Using the comparative DPS between normoxia and hypoxia, two non-supervised classification algorithms discriminated CLL patients with active disease (ADT) and stable disease (NAD) and showed complete consistency with their clinical characteristics. In ADT group under hypoxia, the potency of MG132 was increased, the interaction of ATO + VPA and ATO + VPA + VCR shifted towards antagonism, and ATO + VPA + VCR + MG132 shifted towards synergism, indicating a prominent role of mitochondrial proteostasis. Classification of patients based on DPS, depended on the contrasting response of drugs under hypoxia and normoxia, owing to HMR. Using these drugs as pharmacological sensors, we linked the metabolic arrangement of CLL cells under hypoxia, to potency of drugs targeting MRCSR, and to the clinical features of individual patients, therefore providing new sources of data on disease progression, drug response and risk prognosis.


Subject(s)
Antineoplastic Agents/pharmacology , Hypoxia/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Mitochondria/drug effects , Aged , Aged, 80 and over , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Disease Progression , Female , Humans , Hypoxia/metabolism , Hypoxia/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Mitochondria/metabolism , Mitochondria/pathology , Signal Transduction/drug effects
6.
J Ethnopharmacol ; 247: 112282, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31604138

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Extracts of Smilax campestris Griseb (Smilacaceae) have been employed in the treatment of several inflammatory diseases as a traditional herbal medicine. However, the cellular and molecular mechanisms involved in the observed effects remain elusive. Macrophages are known to play a central role in inflammatory responses. These cells are activated in response to a diversity of danger signals and produce several mediators of inflammation that eventually regulate the immune response. For all the above mentioned, scientific evidence is required to support the popular use of S. campestris. AIM OF THE STUDY: We aimed to investigate the anti-inflammatory effect of S. campestris aqueous extract (SME) in activated THP-1 human macrophages, on the production of some mediators of inflammation and oxidative stress in order to provide scientific support for its popular use. MATERIALS AND METHODS: The characterization of SME was assessed by HPLC-MS/MS. The production of the pro-inflammatory cytokines and chemokines was evaluated by ELISA. The activity of metalloproteases was evaluated by zymography. The subcellular localization of the NF-κB transcription factor was analysed by Western blot. The superoxide anion and glutathione levels were assessed by flow cytometry. The cytotoxicity induced by SME in THP-1 macrophages was also investigated by the LDH release test. RESULTS: In the present study, we have identified catechin and glycosylated derivatives of quercetin (quercetin-3-O-glucoside, quercetin-3-O-galactoside, rutin and quercetin-3-rhamnoside) as major components of the aqueous SME. We found that SME significantly decreased the production of the pro-inflammatory cytokines tumour necrosis factor (TNF)- α, interleukin (IL)-1ß, IL-6, IL-8 and monocyte chemoattractant protein (MCP)-1 and the activity of the metalloproteinase (MMP)-9, in lipopolysaccharide-activated macrophages derived from the monocytic cell line THP-1. Furthermore, SME diminished the expression of NF-κB p65 subunit in the nuclear fraction. In addition, SME decreased the production of superoxide anion in THP-1 macrophages, without altering the levels of reduced glutathione. CONCLUSION: These results suggest that SME exerts its anti-inflammatory effects in human activated macrophages by inhibiting the production of pro-inflammatory cytokines, matrix metalloproteinases and the NF-κB transcription factor pathway along with a reduction of oxidative stress mediators. Moreover, catechin and glycosylated derivatives of were identified by HPLC-MS/MS in SME. Our findings provide scientific support for the traditional use of the S. campestris extracts.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Flavonoids/pharmacology , Macrophages/drug effects , Plant Extracts/pharmacology , Smilax/chemistry , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/isolation & purification , Argentina , Cell Line , Cytokines/immunology , Cytokines/metabolism , Ethnopharmacology , Flavonoids/analysis , Flavonoids/isolation & purification , Glutathione/metabolism , Humans , Lipopolysaccharides/immunology , Macrophages/immunology , Medicine, Traditional/methods , Oxidative Stress/drug effects , Plant Extracts/analysis , Plant Extracts/isolation & purification , Superoxides/metabolism , Toxicity Tests , Water/chemistry
7.
Basic Clin Pharmacol Toxicol ; 122(5): 489-500, 2018 May.
Article in English | MEDLINE | ID: mdl-29205851

ABSTRACT

Collapse of the mitochondrial membrane potential (MMP) is often considered the initiation of regulated cell death (RCD). Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) is an uncoupler of the electron transport chain (ETC) that facilitates the translocation of protons into the mitochondrial matrix leading to the collapse of the MMP. Several cell stress responses such as mitophagy, mitochondrial biogenesis and the ubiquitin proteasome system may differentially contribute to restrain the initiation of RCD depending on the extent of mitochondrial damage. We induced graded mitochondrial damage after collapse of MMP with the mitochondrial uncoupler CCCP in Burkitt's lymphoma cells, and we evaluated the effect of several drugs targeting cell stress responses over RCD at 72 hr, using a multiparametric flow cytometry approach. CCCP caused collapse of MMP after 30 min., massive mitochondrial fission, oxidative stress and increased mitophagy within the 5-15 µM low-dose range (LDR) of CCCP. Within the 20-50 µM high-dose range (HDR), CCCP caused lysosomal destabilization and rupture, thus precluding mitophagy and autophagy. Cell death after 72 hr was below 20%, with increased mitochondrial mass (MM). The inhibitors of mitophagy 3-(2,4-dichloro-5-methoxyphenyl)-2,3-dihydro-2-thioxo-4(1H)-quinazolinone (Mdivi-1) and vincristine (VCR) increased cell death from CCCP within the LDR, while valproic acid (an inducer of mitochondrial biogenesis) also increased MM and cell death within the LDR. The proteasome inhibitor, MG132, increased cell death only in the HDR. Doxycycline, an antibiotic that disrupts mitochondrial biogenesis, had no effect on cell survival, while iodoacetamide, an inhibitor of glycolysis, increased cell death at the HDR. We conclude that mitophagy influenced RCD of lymphoma cells after MMP collapse by CCCP only within the LDR, while proteasome activity and glycolysis contributed to survival in the HDR under extensive mitochondria and lysosome damage.


Subject(s)
Burkitt Lymphoma/drug therapy , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Mitochondria/drug effects , Mitophagy/drug effects , Uncoupling Agents/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/pathology , Autophagy/drug effects , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Iodoacetamide/pharmacology , Leupeptins/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics/drug effects , Oxidative Stress/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Quinazolinones/pharmacology , Reactive Oxygen Species/metabolism , Time Factors , Unfolded Protein Response/drug effects , Vincristine/pharmacology
8.
Eur J Cancer ; 50(18): 3243-61, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25446377

ABSTRACT

We previously demonstrated that arsenic trioxide (ATO) and proteasome inhibitor MG132 synergistically induced cell death in promonocytic leukaemia cell line U937 but were antagonistic in Burkitt's lymphoma cell line Raji. Here we explore the role of autophagy, expression of BNIP3, and mitochondrial mass, in determining whether ATO and MG132 interaction can be shifted from antagonism to synergism in Raji cells. Treatment with ATO+MG132 increased the percentage of cells with collapsed mitochondrial membrane potential (MMP) in U937 cells, but had no effect in Raji cells. Mitochondria were found in cytoplasmic marginal location in U937 cells but at perinuclear location in Raji cells. ATO+MG132 increased mitochondrial mass in U937 cells but decreased it in Raji cells, while autophagy was increased in both cell lines. BNIP3 was expressed in U937 cells at cytoplasmic marginal locations and was hardly detected in Raji cells. Histone deacetylase (HDAC) inhibitor valproic acid (VPA) increased expression of BNIP3 in Raji cells at perinuclear locations. However antagonism between ATO and MG132 was increased in the presence of low doses of VPA. Addition of vincristine (VCR) blocked autophagy, while VPA+VCR treatment of Raji cells at sub-cytotoxic doses caused BNIP3 and mitochondria to redistribute to cytoplasmic peripheral location and increased mitochondrial mass. ATO+MG132 in the presence of subcytotoxic doses of VPA+VCR caused collapse of MMP in Raji cells, while interaction between ATO and MG132 shifted from antagonism to synergism. We conclude that synergism between ATO and MG132 was attained in Raji cells by disruption of the perinuclear mitochondrial cluster, blockage of selective autophagy of mitochondria (mitophagy) by VCR, increased mitochondrial mass, and upregulation of BNIP3 by VPA.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/drug effects , Membrane Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Arsenic Trioxide , Arsenicals/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Enzyme Inhibitors/pharmacology , Humans , Leupeptins/pharmacology , Membrane Potential, Mitochondrial/drug effects , Membrane Potentials/drug effects , Membrane Proteins/metabolism , Mitochondria/drug effects , Oxides/pharmacology , Proto-Oncogene Proteins/metabolism , U937 Cells , Up-Regulation , Valproic Acid/administration & dosage , Valproic Acid/pharmacology , Vincristine/administration & dosage , Vincristine/pharmacology
9.
Target Oncol ; 9(2): 123-34, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23588416

ABSTRACT

Pancreatic cancer is an aggressive disease. Its incidence has increased over the last two decades. It is currently the fourth cause of death among cancers in the western world. Unfortunately, systemic chemotherapy still relies on just a few drugs which until now have produced unsatisfactory results. Gemcitabine (2'-2'-difluorodeoxycytidine) is currently the standard chemotherapy treatment at all stages of pancreatic adenocarcinoma. Survival benefit and clinical impact however remain moderate due to a high degree of intrinsic and acquired resistance. Autophagy plays an important role in cell death decision but can also protect cells from various apoptotic stimuli. We investigated the function of autophagy in pancreatic carcinoma cells, which are frequently insensitive to standard chemotherapeutic agents. Here, we demonstrate that autophagy is one of the mechanisms responsible for the refractory response of pancreatic tumors to gemcitabine. We present evidence in vitro and in vivo that proves autophagy plays a protective role in pancreatic ductal carcinoma cells, preventing them from entering the apoptotic pathway after stimulus with gemcitabine, thus contributing to treatment resistance. A better understanding of the role in the process may help in the discovery of new strategies to overcome tumor drug resistance in this aggressive disease.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Pancreatic Ductal/drug therapy , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Animals , Blotting, Western , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Survival/drug effects , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm/physiology , Flow Cytometry , Humans , Mice , Pancreatic Neoplasms/pathology , Transfection , Xenograft Model Antitumor Assays , Gemcitabine
10.
Target Oncol ; 9(1): 25-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23430344

ABSTRACT

The ability to modulate balance between cell survival and death is recognized for its great therapeutic potential. Therefore, research continues to focus on elucidation of cell machinery and signaling pathways that control cell proliferation and apoptosis. Conventional chemotherapeutic agents often have a cytostatic effect over tumor cells. New natural or synthetic chemotherapeutic agents have a wider spectrum of interesting antitumor activities that merit in-depth studies. In the present work, we aimed at characterizing the molecular mechanism leading to induction of cell death upon treatment of the lymphoblastoid cell line PL104 with caffeic acid phenylethyl ester (CAPE), MG132 and two conventional chemotherapeutic agents, doxorubicine (DOX) and vincristine (VCR). Our results showed several apoptotic hallmarks such as phosphatidylserine (PS) exposure on the outer leaflet of the cell membrane, nuclear fragmentation, and increase sub-G1 DNA content after all treatments. In addition, all four drugs downregulated survivin expression. CAPE and both chemotherapeutic agents reduced Bcl-2, while only CAPE and MG132 significantly increased Bax level. CAPE and VCR treatment induced the collapse of mitochondrial membrane potential (∆ψm). All compounds induced cytochrome c release from mitochondrial compartment to cytosol. However, only MG132 caused the translocation of Smac/DIABLO. Except for VCR treatment, all other drugs increased reactive oxygen species (ROS) production level. All treatments induced activation of caspases 3/7, but only CAPE and MG132 led to the activation of caspase 9. In conclusion, our results indicate that CAPE and MG132 treatment of PL104 cells induced apoptosis through the mitochondrial intrinsic pathway, whereas the apoptotic mechanism induced by DOX and VCR may proceed through the extrinsic pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caffeic Acids/pharmacology , Leukemia/pathology , Leupeptins/pharmacology , Mitochondria/drug effects , Phenylethyl Alcohol/analogs & derivatives , Adolescent , Adult , Caffeic Acids/therapeutic use , Child , Child, Preschool , Drugs, Investigational/pharmacology , Female , Humans , Leukemia/drug therapy , Leupeptins/therapeutic use , Male , Middle Aged , Mitochondria/physiology , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Tumor Cells, Cultured , Young Adult
11.
Ann Intensive Care ; 2 Suppl 1: S13, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22873414

ABSTRACT

BACKGROUND: Although the World Society for Abdominal Compartment Syndrome in its guidelines recommends midaxillary line (MAL) as zero reference level in intra-abdominal pressure (IAP) measurements in aiming at standardizing the technique, evidence supporting this suggestion is scarce. The aim of this study is to study if the zero reference position influences bladder pressure measurements as estimate for IAP. METHODS: The IAP of 100 surgical patients was measured during the first 24 h of admission to the surgical intensive care unit of General Calixto Garcia Hospital in Havana (Cuba) following laparotomy. The period was January 2009 to January 2010. The IAP was measured twice with a six-hour interval using the transurethral technique with a priming volume of 25 ml. IAP was first measured with the zero reference level placed at MAL (IAPMAL), followed by a second measurement at the level of the symphysis pubis (SP) after 3 minutes (IAPSP). Correlations were made between IAP and body mass index (BMI), type of surgery, gender, and age. RESULTS: Mean IAPMAL was 8.5 ± 2.8 mmHg vs. IAPSP 6.5 ± 2.8 mmHg (p < 0.0001). The bias between measurements was 2.0 ± 1.5, 95% confidence interval of 1.4 to 3.0, upper limit of 4.9, lower limit of -0.9, and a percentage error of 35.1%. IAPMAL was consistently higher than IAPSP regardless of the type of surgery. The BMI correlated with IAP values regardless of the zero reference level (R2 = 0.4 and 0.3 with IAPMAL and IAPSP respectively, p < 0.0001). CONCLUSIONS: The zero reference level has an important impact on IAP measurement in surgical patients after laparotomy and can potentially lead to over or underestimation. Further anthropometric studies are needed with regard to the relative MAL and SP zero reference position in relation to the theoretical ideal reference level at midpoint of the abdomen. Until better evidence is available, MAL remains the recommended zero reference position due to its best anatomical localization at iliac crest.

12.
Int J Cell Biol ; 2012: 280675, 2012.
Article in English | MEDLINE | ID: mdl-22550489

ABSTRACT

Clot formation in the sipunculid Themiste petricola, a coelomate nonsegmented marine worm without a circulatory system, is a cellular response that creates a haemostatic mass upon activation with sea water. The mass with sealing properties is brought about by homotypic aggregation of granular leukocytes present in the coelomic fluid that undergo a rapid process of fusion and cell death forming a homogenous clot or mass. The clot structure appears to be stabilized by abundant F-actin that creates a fibrous scaffold retaining cell-derived components. Since preservation of fluid within the coelom is vital for the worm, clotting contributes to rapidly seal the body wall and entrap pathogens upon injury, creating a matrix where wound healing can take place in a second stage. During formation of the clot, microbes or small particles are entrapped. Phagocytosis of self and non-self particles shed from the clot occurs at the clot neighbourhood, demonstrating that clotting is the initial phase of a well-orchestrated dual haemostatic and immune cellular response.

13.
Toxicol Appl Pharmacol ; 258(3): 351-66, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22178740

ABSTRACT

Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou-Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O2⁻) levels. Our results showed that combined arsenite+MG132 produced low levels of O2⁻ at 6h and 24h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80µM hydrogen peroxide together with arsenite+MG132 changed synergism on cell death to antagonism at all effect levels while increasing O2⁻ levels. Arsenite+hydrogen peroxide also resulted in antagonism with increased O2⁻ levels in U937 cells. In Raji cells, arsenite+MG132 also produced low levels of O2⁻ at 6h and 24h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite+CAPE showed high levels of O2⁻ production at 6h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O2⁻ levels at early time points after exposure.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenites/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leupeptins/pharmacology , Sodium Compounds/pharmacology , Antineoplastic Agents/administration & dosage , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/pathology , Cell Death/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Humans , Hydrogen Peroxide/pharmacology , Leukemia, Myeloid, Acute/pathology , Leupeptins/administration & dosage , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Time Factors , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...